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Abstmcr: 1-Morpholino-3-phen~~en~ isomer& to 3,4.~12b-tetrahydro-1U-I/qoxazino[O-al[s at a 105 ‘C. 

Sii&rly, 1-morphoiiio-3-vinylakes are transformed into 3,4,lO,l~-t~~~~~-[l,4]~~4~a]~p~es. Formation of 

these novel heterocycles is rational&i by a If-proton shift ia the morpholiioallenes, followed by 1,7-electrocyclization of the 

Q,&~,&msaturated azomethine. yiide thus formed. 

Aminoallenes 1 bearing a CHR2 substituent at either one of the terminal allenic carbon atoms 
tautomerize thermally by a formal 1,3-H shift more or less rapidly to l- or 2-dienamines:1*2 

As a consequence, such aminoallenes are of limited use for further synthetic transformations, 
especially when elevated temperatures are needed, and they may even escape their isolation. We report 
here that 1-morpholino-3-phenylallenes without CHR2 substituents at the allene moiety, although 
perfectly stable at ambient temperature, undergo an unprecedented thermal isomerization which begins 
with a 1,Chydrogen migration. 

When a toluene solution of morpholinoallenes 2a-c is heated at 120-130 OC in a Schlenk pressure 
tube, 3,4,5,12b-tetrahydro-lH-[1,4]oxazino[4,3-a][2]benzazepines 3a-c are formed practically quanti- 
tatively. 
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The constitution of these novel heterocycles follows from their lH and 13C NMR dam3 In the 400 
MHz lH NMR spectra, the morpholine protons form well-resolved ARXY and ARY spin systems. 
Assignments can be made based on the values of the 2J and 3J coupling constants4 (Figure 1). It then 
becomes evident that 12b-H is in the equatorial position. The full relative stereochemistry (Sa,6a,12a) of 
these molecules was suggested by NOE experiments and firmly established by an X-ray crystal structure 
analysis of 3a* (Figure 2). 

Fig. 1. lH NMR data of 3a. 
(CDC13, 400 MHz); 6 values are given. 
coU@rg conrrunkx [Hz]:6 
J(l-Ha&He) = -1l$J(4-Ha/t-He) = -11.7; 
J(l-Ha,12b-II) = 3.6;I(4-Ha,3-He) = 3.2; 
J(3-Ha,3-He) = -ll.o;J(4-Ha,3-Ha) = 11.0; 
J(3-Ha/t-Ha) = ll.o;J(6-H, 7-H) = 5.5; 
J(3-Ha,4-He) = 2.6; 

Fig. 2. SCHAKAL plot of 3a. 
Torsion angles in the seven- 
membered ring [O]: 
Cl-Nl-C5-C6 41.7(2) 
Nl-C5-C6-C7 -77.7(2) 
C5-C6-C7-c8 7.0(3) 
C6-C%c8-C9 42.1(3) 
C7-C&C%Cl 5.2(3) 
C&C9-Nl-Cl-77.2(2) 
C9-Cl-NlC5 44.6(2) 

In mechanistic terms, the isomerization -3 is likely to begin with a 1,4-shift of a NCH2 proton to 
the highly basic central allenic carbon atom. The a,&~,&unsaturated azomethine ylide (4) thus formed7 
is supposed to undergo a conrotatory 1,7_electrocyclization* to 5 which rearomatizes by a lJ-suprafacial 
hydrogen shift. The isomerization 2~ 5 is reminiscent of the thermal ring-closure reactions taking place 
for certain ortho-alkenyl-N,N-dialkylanilines and l-(N,Ndialkylamino)-1,3dienes.9 In those cases, how- 
ever, it is a hydride rather than a proton shift which generates a 1,5- or 1,6-dipolar intermediate. 
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The electroqclixation step 4-+S suggests that the participating aromatic ring can be replaced by 
an olefinic double bond. This is indeed the case. Heating of 1-morpholino-3-phenyl-3-vinylallene 2d at 
105 OC (toluene) yields a 53:47 mixture of 3d and the (5a,1Oa)-3,4,1O,lOa-tetrahydro-1W-[1,4]oxaxino[4,3- 
alaxepine 7.1° An electrocyclixation analogous to U 7 has been proposed to be involved in the thermal 
isomerixation of 2-acyl-1-dimethylamino-1,3,4qentatrienes to 6-acyl-2,3dihydroaxepines.11 

;24 z 
It is obvious that a broad range of substituted 2,3_dihydroaxepines and VI-[;?]benxaxepines will be 

accessible by appropriate modifications of aminoallenes 2. 
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